Critical behaviour of anisotropic spiral self avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L899
(http://iopscience.iop.org/0305-4470/17/16/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:15

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Critical behaviour of anisotropic spiral self avoiding walks

S S Manna
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, India

Received 7 June 1984, in final form 20 August 1984

Abstract

Here we consider three-choice-spiral and two-choice-spiral self avoiding walks (SAWs) on a square lattice, for which the (anisotropic) constraints are such that for any nth step in the x and $-x$ direction, the ($n+1$)th step is forbidden to be in the clockwise (or anticlockwise) direction, while for the nth step in the y and $-y$ direction, there may or may not be any special constraints for the next step. In the case of three-choice-spiral SAWs, there is no such constraint (other than self avoiding) while, in the case of two-choicespiral SAws, with the nth step in the y and $-y$ directions, the $(n+1)$ th step is forbidden to follow the same direction. From exact enumeration results we find a new universality class having $\gamma=1.58 \pm 0.05$ and $\nu=0.842 \pm 0.014$ for such SAws.

Recently considerable interest has been shown in studying the effect of different constraints (microscopic or macroscopic) on self avoiding walk (SAw) statistics, specifically in two dimensions. For example, Grassberger (1982) showed that two-choice saws, in which no two successive steps are allowed in the same lattice direction (microscopic constraint), belong to the same universality class as that of ordinary saws. Directed self avoiding walks (DSAws) (Fisher and Sykes 1959, Chakrabarti and Manna 1983) are forbidden to have any steps along a specified lattice direction (macroscopic constraint). Field-theoretic and exact studies (Cardy 1983, Redner and Majid 1983) show that the critical behaviour of DSAws is mean-field-like and is anisotropic. In spiral saws (Privman 1983), the constraint is such that every step forbids its next step to be in the clockwise (or anticlockwise) direction, so that the walk spirals about a direction perpendicular to the plane of the walk. Such a macroscopic constraint also leads to a different universality class (Privman 1983).

Here we have studied some anisotropic hybridisation of such constraints, which lead to a new universality class for the constraint Saws. Specifically we have considered saws on a square lattice where any nth step in the x (and $-x$) direction forbids the next $(n+1)$ th step to be in the clockwise (or anticlockwise) direction (spiral constraint for the $(n+1)$ th step when the nth step is in the x and $-x$ directions) while for steps in the y (and $-y$) directions there may or may not be special constraints for the next step. In the first case, which we shall call three-choice-spiral saws, there is no constraint (other than the self avoiding restriction) for the $(n+1)$ th step, when the nth step is in the y (and $-y$) directions (see figure 1); while for the second case, which we shall call two-choice-spiral saws, the ($n+1$)th step is forbidden to be along the y direction (two-choice constraint) if the preceding nth step is in the y (and $-y$) direction (see figure 1). From the exact enumeration results, we find a new universality class for SAWs with such constraints.

Figure 1. Choices for the $(n+1)$ th step (shown by broken arrows) for various directions of the nth step (shown by full lines). (a) for three-choice-spiral SAWs (b) for two-choicespiral saws.

The total number of independent configurations G_{N} of such special spiral saws of N steps are given in tables 1 and 2 (for three-choice and two-choice-spiral saws respectively) from exact enumeration. In order to see the possible anisotropy in the shape of an average configuration of such spiral saws, we have calculated the average of the projection of the end-to-end distance squares $\left\langle R_{N}^{2}\right\rangle$, for the N-stepped walks, along the x axis, y axis, $y=x$ line and $y=-x$ line $(\alpha=1,2,3$ and 4 directions respectively). These are also given in tables 1 and 2 . Both G_{N} and $\left\langle R_{N}^{2}\right\rangle$ (angular bracket denoting configurational average) are assumed, in the $N \rightarrow \infty$ limit, to have the scaling forms (but see later)

$$
\begin{align*}
& G_{N} \sim \mu^{N} N^{\gamma-1} \tag{1}\\
& \left\langle R_{N}^{2}\right\rangle \sim N^{2 \nu} \quad(\alpha=1, \ldots, 4) . \tag{2}
\end{align*}
$$

Table 1. Simulation results for G_{N} and $\left\langle R_{N}^{2}\right\rangle_{\alpha}, \alpha=1,2,3$ and 4 for N up to 21 for three-choice-spiral SAWs.

N	G_{N}	$\left\langle R_{N}^{2}\right\rangle_{x \text { axis and } y \text { axis }}$	$\left\langle R_{N}^{2}\right\rangle_{y=x}$	$\left\langle R_{N}^{2}\right\rangle_{y=-x}$
1	4	0.50000	0.70711	0.70711
2	10	1.40000	1.60000	1.20000
3	24	2.50000	3.16666	1.83333
4	54	3.92592	5.33333	2.51852
5	124	5.40322	7.72580	3.08064
6	272	7.25000	10.76470	3.73529
7	608	9.06578	13.86842	4.26315
8	1314	11.28767	17.68036	4.89497
9	2884	13.42649	21.44868	5.40429
10	6178	15.97831	25.94496	6.01165
11	13388	18.42411	30.33925	6.50896
12	28486	21.28442	35.47230	7.09653
13	61168	24.01935	40.45500	7.58370
14	129446	27.17313	46.19087	8.15540
15	276020	30.18402	51.73396	8.63407
16	581572	33.61769	58.04316	9.19223
17	1233204	36.89414	64.12453	9.66375
18	2588906	40.59682	70.98337	10.21027
19	5464816	44.12953	77.58356	10.67549
20	11437088	48.09210	84.97229	11.21191
21	24050760	51.87334	92.07512	11.67156

Table 2. Simulation results for G_{N} and $\left(R_{N}^{2}\right)_{\alpha}, \alpha=1,2,3$ and 4 for N up to 28 for two-choice-spiral SAws.

\boldsymbol{N}	G_{N}	$\left\langle R_{N}^{2}\right\rangle_{x-a x i s}$	$\left\langle R_{N}^{2}\right\rangle_{y-\mathrm{ax} 1 \mathrm{~s}}$	$\left\langle R_{N}^{2}\right\rangle_{y=x}$	$\left\langle R_{N}^{2}\right\rangle_{y=-x}$
1	4	0.50000	0.50000	0.70711	0.70711
2	8	1.75000	0.75000	1.50000	1.00000
3	16	3.37500	1.12500	3.00000	1.50000
4	28	5.92857	1.64285	5.28571	2.28571
5	52	8.57692	2.11538	7.73076	2.96153
6	90	12.20000	2.77777	11.06666	3.91111
7	160	15.90000	3.40000	14.50000	4.80000
8	276	20.41304	4.18115	18.69565	5.89855
9	484	24.90082	4.90909	22.88016	6.92975
10	826	30.36803	5.82566	27.98547	8.20823
11	1434	35.60111	6.65969	32.88493	9.37587
12	2438	41.84249	7.68006	38.73174	10.79081
13	4194	47.84549	8.62613	4436647	12.10515
14	7104	54.83220	9.74887	50.92736	13.65371
15	12150	61.51818	10.79308	57.21506	15.09621
16	20506	69.24305	12.01882	64.48142	16.78045
17	34898	76.60553	13.16104	71.41592	18.35065
18	58740	85.01835	14.48283	79.33987	20.16132
19	99568	93.03117	15.71910	86.89587	21.85441
20	167186	102.11591	17.13569	95.46229	23.78931
21	282468	110.75357	18.46221	103.61531	25.60047
22	473318	120.48532	19.97035	112.80024	27.65543
23	797462	129.73252	21.38507	121.53579	29.58180
24	1333866	140.09139	22.98226	131.32018	31.75347
25	2241980	149.93085	24.48265	140.62162	33.79182
26	3744048	160.90006	26.16679	150.98950	36.07735
27	6279996	171.31700	27.75074	160.84271	38.22504
28	10472560	182.88079	29.51978	171.78961	40.62161

Table 3. Extrapolated values of μ, γ and ν (equations (1) and (2)) for three and two-choicespiral SAWs.

			ν_{1}	ν_{2}	ν_{3}	ν_{4}
Three-choice-spiral SAW	2.04	1.613	$0.828 \pm$ $0.828 \pm$ $0.847 \pm$ $0.428 \pm$ 0.001	0.001	0.001	0.001
Two-choice-spiral SAW	1.63	1.535	$0.852 \pm$ 0.002	$0.852 \pm$ 0.001	$0.854 \pm$ 0.001	$0.834 \pm$

The μ and γ values are obtained following the extrapolation procedure outlined by Martin (1967) and to find ν, we define (Grassberger 1982) $\nu_{N}=$ $(N / 2)\left[\left(\left\langle R_{N+1}^{2}\right\rangle /\left\langle R_{N}^{2}\right\rangle\right)-1\right]$ for each direction α and take the extrapolated ν_{N} values in the limit $N^{-1} \rightarrow 0$ (see figures 2 and 3). The values of μ, γ and $\nu_{1}, \nu_{2}, \nu_{3}$ and ν_{4} are given in table 1 .

The values of γ and ν, as given in table 3, clearly indicate a new universality class for such saws, different from those of ordinary saws ($\gamma=1.34, \nu=0.75$) or of spiral SAWs ($\gamma=5.2 \pm 1.3, \nu=0.62 \pm 0.06$).

Figure 2. Plot of ν_{N} against $1 / N$ for three-choicespiral SAWs.

Figure 3. Plot of ν_{N} against $1 / N$ for two-choicespiral SAWs.

The critical behaviour of the statistics of two-choice-spiral SAws is thus seen to be isotropic ($\nu=0.842 \pm 0.014$) within limits of experimental accuracy, while that of three-choice-spiral saws is anisotropic with the same value of ν in the $y=x$ direction and with $\nu=0.428 \pm 0.001$ in the perpendicular direction. However, in view of the apparent 'microscopic' anisotropy of the definition of such SAWs (both three and two-choice-spiral saws) this is rather surprising. It may be noted that this is not peculiar to two-choice-spiral saws alone: one can also define three-choice-two-choice saws where for the nth step in the x and $-x$ directions, the saws cannot follow the same direction for the $(n+1)$ th step, while for steps in the y and $-y$ directions there are no restrictions (other than self avoiding) for the next step. Exact enumeration results show the critical behaviour of such walks also to be isotropic, with the same exponent value as those of ordinary saws (Manna 1984).

After completion of this work we came across the work of Blöte and Hilhorst (1984), and of Guttmann and Wormald (1984), which shows that the statistics of spiral saws is exactly solvable and the assumed scaling forms (1) and (2), for G_{N} and $\left\langle R_{N}^{2}\right\rangle$ respectively, are not strictly valid for spiral saws. This is particularly so for G_{N} while for $\left\langle R_{N}^{2}\right\rangle$, the scaling form (2) is valid with a logarithmic correction of $\nu=1 / 2$ (Redner and de Arcangelis 1984, Blöte and Hilhorst 1984). We therefore fitted the values of $\left\langle R_{N}^{2}\right\rangle_{\alpha} / \log (N)$ to a form $N^{2 \nu^{\prime}}$ for all α 's. For three-choice-spiral saws, $\nu_{1}^{\prime}, \nu_{2}^{\prime}, \nu_{3}^{\prime}$ are 0.723 ± 0.009 and ν_{4} is 0.311 ± 0.001. For two-choice-spiral saws for all directions ν^{\prime} is 0.735 ± 0.015.

As already mentioned (see table 3), without the $\log (N)$ term $\left\langle R_{N}^{2}\right\rangle_{\alpha}$ fits the form $N^{2 \nu}$, with $\nu_{1}, \nu_{2}, \nu_{3}$ equal to 0.842 ± 0.014 and $\nu_{4}=0.428 \pm 0.001$ for three-choicespiral saws and $\nu=0.842 \pm 0.014$ for all directions for two-choice-spiral saws. Since the errors in the fitting values of ν and ν^{\prime} are of the same order, we cannot distinguish
here between the two scaling forms. However, in either of the two cases, the observed ν^{\prime} or ν values (with and without the log correction) do not fall into any of the known universality classes.

I am grateful to Dr B K Chakrabarti for many useful comments and suggestions.

References

Blöte H W J and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111
Cardy J L 1983 J. Phys. A: Math. Gen. 16 L355
Chakrabarti B K and Manna S S 1983 J. Phys. A: Math. Gen. 16 L113
Fisher M E and Sykes M F 1959 Phys. Rev. 11445
Grassberger P 1982 Z. Phys. B 48255
Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271
Manna S S 1984 to be published
Martin J L, Sykes M F and Hioe F T 1967 J. Chem. Phys. 463478
Privman V 1983 J. Phys. A: Math. Gen. 16 L571
Redner S and Majid I 1983 J. Phys. A: Math. Gen. 16 L307
Redner S, Majid I and de Arcangelis L 1984 J. Phys. A: Math. Gen. 17 L203

