Home Search Collections Journals About Contact us My IOPscience

Critical behaviour of anisotropic spiral self avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1984 J. Phys. A: Math. Gen. 17 L899 (http://iopscience.iop.org/0305-4470/17/16/008) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 30/05/2010 at 18:15

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Critical behaviour of anisotropic spiral self avoiding walks

S S Manna

Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, India

Received 7 June 1984, in final form 20 August 1984

Abstract. Here we consider three-choice-spiral and two-choice-spiral self avoiding walks (SAWs) on a square lattice, for which the (anisotropic) constraints are such that for any *n*th step in the x and -x direction, the (n+1)th step is forbidden to be in the clockwise (or anticlockwise) direction, while for the *n*th step in the y and -y direction, there may or may not be any special constraints for the next step. In the case of three-choice-spiral SAWs, there is no such constraint (other than self avoiding) while, in the case of two-choice-spiral SAWs, with the *n*th step in the y and -y directions, the (n+1)th step is forbidden to follow the same direction. From exact enumeration results we find a new universality class having $\gamma = 1.58 \pm 0.05$ and $\nu = 0.842 \pm 0.014$ for such SAWS.

Recently considerable interest has been shown in studying the effect of different constraints (microscopic or macroscopic) on self avoiding walk (sAw) statistics, specifically in two dimensions. For example, Grassberger (1982) showed that two-choice sAws, in which no two successive steps are allowed in the same lattice direction (microscopic constraint), belong to the same universality class as that of ordinary sAws. Directed self avoiding walks (DSAWS) (Fisher and Sykes 1959, Chakrabarti and Manna 1983) are forbidden to have any steps along a specified lattice direction (macroscopic constraint). Field-theoretic and exact studies (Cardy 1983, Redner and Majid 1983) show that the critical behaviour of DSAWS is mean-field-like and is anisotropic. In spiral sAWS (Privman 1983), the constraint is such that every step forbids its next step to be in the clockwise (or anticlockwise) direction, so that the walk spirals about a direction perpendicular to the plane of the walk. Such a macroscopic constraint also leads to a different universality class (Privman 1983).

Here we have studied some anisotropic hybridisation of such constraints, which lead to a new universality class for the constraint sAws. Specifically we have considered sAws on a square lattice where any *n*th step in the x (and -x) direction forbids the next (n+1)th step to be in the clockwise (or anticlockwise) direction (spiral constraint for the (n+1)th step when the *n*th step is in the x and -x directions) while for steps in the y (and -y) directions there may or may not be special constraints for the next step. In the first case, which we shall call three-choice-spiral sAws, there is no constraint (other than the self avoiding restriction) for the (n+1)th step, when the *n*th step is in the y (and -y) directions (see figure 1); while for the second case, which we shall call two-choice-spiral sAws, the (n+1)th step is forbidden to be along the y direction (two-choice constraint) if the preceding *n*th step is in the y (and -y) direction (see figure 1). From the exact enumeration results, we find a new universality class for SAWS with such constraints.

Figure 1. Choices for the (n+1)th step (shown by broken arrows) for various directions of the *n*th step (shown by full lines). (a) for three-choice-spiral sAWs (b) for two-choice-spiral sAWs.

The total number of independent configurations G_N of such special spiral sAWs of N steps are given in tables 1 and 2 (for three-choice and two-choice-spiral sAWs respectively) from exact enumeration. In order to see the possible anisotropy in the shape of an average configuration of such spiral sAWs, we have calculated the average of the projection of the end-to-end distance squares $\langle R_N^2 \rangle$, for the N-stepped walks, along the x axis, y axis, y = x line and y = -x line ($\alpha = 1, 2, 3$ and 4 directions respectively). These are also given in tables 1 and 2. Both G_N and $\langle R_N^2 \rangle$ (angular bracket denoting configurational average) are assumed, in the $N \to \infty$ limit, to have the scaling forms (but see later)

$$G_N \sim \mu^N N^{\gamma - 1} \tag{1}$$

$$\langle R_N^2 \rangle \sim N^{2\nu}$$
 ($\alpha = 1, \ldots, 4$). (2)

Table 1. Simulation results for G_N and $\langle R_N^2 \rangle_{\alpha}$, $\alpha = 1, 2, 3$ and 4 for N up to 21 for three-choice-spiral SAWS.

N	G _N	$\langle R_N^2 \rangle_x$ axis and y axis	$\langle \boldsymbol{R}_{N}^{2} \rangle_{y=x}$	$\langle R_N^2 \rangle_{y=-x}$	
1	4	0.500 00	0.707 11	0.707 11	
2	10	1.400 00	1.600 00	1.200 00	
3	24	2.500 00	3.166 66	1.833 33	
4	54	3.925 92	5.333 33	2.518 52	
5	124	5.403 22	7.725 80	3.080 64	
6	272	7.250 00	10.764 70	3.735 29	
7	608	9.065 78	13.868 42	4.263 15	
8	1 314	11.287 67	17.680 36	4.894 97	
9	2 884	13.426 49	21.448 68	5.404 29	
10	6 178	15.978 31	25.944 96	6.011 65	
11	13 388	18.424 11	30.339 25	6.508 96	
12	28 486	21.284 42	35.472 30	7.096 53	
13	61 168	24.019 35	40.455 00	7.583 70	
14	129 446	27.173 13	46.190 87	8.155 40	
15	276 020	30.184 02	51.733 96	8.634 07	
16	581 572	33.617 69	58.043 16	9.192 23	
17	123 320 4	36.894 14	64.124 53	9.663 75	
18	2 588 906	40.596 82	70.983 37	10.210 27	
19	5 464 816	44.129 53	77.583 56	10.675 49	
20	11 437 088	48.092 10	84.972 29	11.211 91	
21	24 050 760	51.873 34	92.075 12	11.671 56	

N	G _N	$\langle R_N^2 \rangle_{x-axis}$	$\langle R_N^2 \rangle_{y-axis}$	$\langle R_N^2 \rangle_{y=x}$	$\langle R_N^2 \rangle_{y=-x}$
1	4	0.500 00	0.500 00	0.707 11	0.707 11
2	8	1.750 00	0.750 00	1.500 00	1.000 00
3	16	3.375 00	1.125 00	3.000 00	1.500 00
4	28	5.928 57	1.642 85	5.285 71	2.285 71
5	52	8.576 92	2.115 38	7.730 76	2.961 53
6	90	12.200 00	2.777 77	11.066 66	3.911 11
7	160	15.900 00	3.400 00	14.500 00	4.800 00
8	276	20.413 04	4.181 15	18.695 65	5.898 55
9	484	24.900 82	4.909 09	22.880 16	6.929 75
10	826	30.368 03	5.825 66	27.985 47	8.208 23
11	1 434	35.601 11	6.659 69	32.884 93	9.375 87
12	2 438	41.842 49	7.680 06	38.731 74	10.790 81
13	4 194	47.845 49	8.626 13	44 366 47	12.105 15
14	7 104	54.832 20	9.748 87	50.927 36	13.653 71
15	12 150	61.518 18	10.793 08	57.215 06	15.096 21
16	20 506	69.243 05	12.018 82	64.481 42	16.780 45
17	34 898	76.605 53	13.161 04	71.415 92	18.350 65
18	58 740	85.018 35	14.482 83	79.339 87	20.161 32
19	99 568	93.031 17	15.719 10	86.895 87	21.854 41
20	167 186	102.115 91	17.135 69	95.462 29	23.789 31
21	282 468	110.753 57	18.462 21	103.615 31	25.600 47
22	473 318	120.485 32	19.970 35	112.800 24	27.655 43
23	797 462	129.732 52	21.385 07	121.535 79	29.581 80
24	1 333 866	140.091 39	22.982 26	131.320 18	31.753 47
25	2 241 980	149.930 85	24.482 65	140.621 62	33.791 82
26	3 744 048	160.900 06	26.166 79	150.989 50	36.077 35
27	6 279 996	171.317 00	27.750 74	160.842 71	38.225 04
28	10 472 560	182.880 79	29.519 78	171.789 61	40.621 61

Table 2. Simulation results for G_N and $\langle R_N^2 \rangle_{\alpha}$, $\alpha = 1, 2, 3$ and 4 for N up to 28 for two-choice-spiral SAWs.

Table 3. Extrapolated values of μ , γ and ν (equations (1) and (2)) for three and two-choice-spiral SAWs.

			$\boldsymbol{\nu}_1$	ν_2	ν ₃	ν ₄
Three-choice-spiral SAW	2.04	1.613	0.828± 0.001	0.828 ± 0.001	0.847 ± 0.001	0.428 ± 0.001
Two-choice-spiral sAW	1.63	1.535	0.852± 0.002	0.852 ± 0.001	$\begin{array}{c} 0.854 \pm \\ 0.001 \end{array}$	0.834± 0.001

The μ and γ values are obtained following the extrapolation procedure outlined by Martin (1967) and to find ν , we define (Grassberger 1982) $\nu_N = (N/2)[(\langle R_{N+1}^2 \rangle / \langle R_N^2 \rangle) - 1]$ for each direction α and take the extrapolated ν_N values in the limit $N^{-1} \rightarrow 0$ (see figures 2 and 3). The values of μ , γ and ν_1 , ν_2 , ν_3 and ν_4 are given in table 1.

The values of γ and ν , as given in table 3, clearly indicate a new universality class for such sAWs, different from those of ordinary sAWs ($\gamma = 1.34$, $\nu = 0.75$) or of spiral sAWs ($\gamma = 5.2 \pm 1.3$, $\nu = 0.62 \pm 0.06$).

Figure 2. Plot of ν_N against 1/N for three-choicespiral SAWS.

Figure 3. Plot of ν_N against 1/N for two-choicespiral SAWS.

The critical behaviour of the statistics of two-choice-spiral sAws is thus seen to be isotropic ($\nu = 0.842 \pm 0.014$) within limits of experimental accuracy, while that of three-choice-spiral sAws is anisotropic with the same value of ν in the y = x direction and with $\nu = 0.428 \pm 0.001$ in the perpendicular direction. However, in view of the apparent 'microscopic' anisotropy of the definition of such sAws (both three and two-choice-spiral sAws) this is rather surprising. It may be noted that this is not peculiar to two-choice-spiral sAws alone: one can also define three-choice-two-choice sAws where for the *n*th step in the x and -x directions, the sAws cannot follow the same direction for the (n+1)th step, while for steps in the y and -y directions there are no restrictions (other than self avoiding) for the next step. Exact enumeration results show the critical behaviour of such walks also to be isotropic, with the same exponent value as those of ordinary sAws (Manna 1984).

After completion of this work we came across the work of Blöte and Hilhorst (1984), and of Guttmann and Wormald (1984), which shows that the statistics of spiral sAws is exactly solvable and the assumed scaling forms (1) and (2), for G_N and $\langle R_N^2 \rangle$ respectively, are not strictly valid for spiral sAws. This is particularly so for G_N while for $\langle R_N^2 \rangle$, the scaling form (2) is valid with a logarithmic correction of $\nu = 1/2$ (Redner and de Arcangelis 1984, Blöte and Hilhorst 1984). We therefore fitted the values of $\langle R_N^2 \rangle_{\alpha}/\log(N)$ to a form $N^{2\nu'}$ for all α 's. For three-choice-spiral sAws, ν'_1 , ν'_2 , ν'_3 are 0.723 \pm 0.009 and ν_4 is 0.311 \pm 0.001. For two-choice-spiral sAws for all directions ν' is 0.735 \pm 0.015.

As already mentioned (see table 3), without the $\log(N)$ term $\langle R_N^2 \rangle_{\alpha}$ fits the form $N^{2\nu}$, with ν_1 , ν_2 , ν_3 equal to 0.842 ± 0.014 and $\nu_4 = 0.428 \pm 0.001$ for three-choice-spiral saws and $\nu = 0.842 \pm 0.014$ for all directions for two-choice-spiral saws. Since the errors in the fitting values of ν and ν' are of the same order, we cannot distinguish

here between the two scaling forms. However, in either of the two cases, the observed ν' or ν values (with and without the log correction) do not fall into any of the known universality classes.

I am grateful to Dr B K Chakrabarti for many useful comments and suggestions.

References

Blöte H W J and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111
Cardy J L 1983 J. Phys. A: Math. Gen. 16 L355
Chakrabarti B K and Manna S S 1983 J. Phys. A: Math. Gen. 16 L113
Fisher M E and Sykes M F 1959 Phys. Rev. 114 45
Grassberger P 1982 Z. Phys. B 48 255
Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271
Manna S S 1984 to be published
Martin J L, Sykes M F and Hioe F T 1967 J. Chem. Phys. 46 3478
Privman V 1983 J. Phys. A: Math. Gen. 16 L571
Redner S and Majid I 1983 J. Phys. A: Math. Gen. 16 L307
Redner S, Majid I and de Arcangelis L 1984 J. Phys. A: Math. Gen. 17 L203